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6.0 Introduction 

The precise estimation of the global agricultural cropland- extents, areas, geographic locations, 

crop types, cropping intensities, and their watering methods (irrigated or rainfed; type of 

irrigation) provides a critical scientific basis for the development of water and food security 

policies (Thenkabail et al., 2012, 2011, 2010). By year 2100, the global human population is 

expected to grow to 10.4 billion under median fertility variants or higher under constant or 

higher fertility variants (Table 6.1) with over three quarters living in developing countries and in 

regions that already lack the capacity to produce enough food. With current agricultural 

practices, the increased demand for food and nutrition would require about 2 billion hectares of 

additional cropland, about twice the equivalent to the land area of the United States, and lead to 

significant increases in greenhouse gas productions associated with agricultural practices and 

activities  (Tillman et al., 2011). For example, during 1960-2010, world population more than 

doubled from 3 billion to 7 billion. The nutritional demand of the population also grew swiftly 

during this period from an average of about 2000 calories per day per person in 1960 to nearly 

3000 calories per day per person in 2010. The food demand of increased population along with 

increased nutritional demand during this period was met by the “green revolution” which more 

than tripled the food production; even though croplands decreased from about 0.43 ha per capita 

to 0.26 ha per capita (FAO, 2009). The increase in food production during the green revolution 

was the result of factors such as: (a) expansion of irrigated croplands, which had increased in 

2000 from 130 Mha in the 1960s to between 278 Mha (Siebert et al., 2006) and 467 Mha 

(Thenkabail et al., 2009a, 2009b, 2009c), with the larger estimate due to consideration of 

cropping intensity; (b) increase in yield and per capita production of food (e.g., cereal production 

from 280 kg/person to 380 kg/person and meat from 22 kg/person to 34 kg/person (McIntyre, 

2008); (c) new cultivar types (e.g., hybrid varieties of wheat and rice, biotechnology); and (d) 

modern agronomic and crop management practices (e.g., fertilizers, herbicide, pesticide 

applications). 

 

Although modern agriculture met the challenge to increase food production last century, 

lessons learned from the 20
th

 century “green revolution” and our current circumstances impact 

the likelihood of another such revolution. The intensive use of chemicals have adversely 

impacted the environment in many regions, leading to salinization and decreasing water quality 

and degrading croplands. From 1960 to 2000, worldwide phosphorous use doubled from 10 

million tons (MT) to 20 MT, pesticide use tripled from near zero to 3 MT, and nitrogen use as 

fertilizer increased to a staggering 80 MT from just 10 MT (Foley et al., 2007; Khan and Hanjra, 

2008). Diversion of croplands to bio-fuels is taking water away from food production (Bindraban 

et al., 2009), even as the economic, carbon sequestration, environmental, and food security 

impacts of biofuel production are proving to be a net negative (Lal and Pimentel, 2009; Gibbs et 

al., 2008; Searchinger et al., 2008). Climate models predict that the hottest seasons on record will 

become the norm by the end of the century in most regions of the world - a prediction that bodes 

ill for feeding the world (Kumar and Singh, 2005). Increasing per capita meat consumption is 

increasing agricultural demands on land and water (Vinnari and Tapio, 2009). Cropland areas are 

decreasing in many parts of the World due to urbanization, industrialization, and salinization 

(Khan and Hanjra, 2008). Ecological and environmental imperatives, such as biodiversity 

conservation and atmospheric carbon sequestration, have put a cap on the possible expansion of 

cropland areas to other lands such as forests and rangelands (Gordon et al., 2009). Crop yield 

increases of the green revolution era have now stagnated (Hossain et al., 2005). Given these 
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factors and limitations, further increase in food production through increase in cropland areas 

and\or increased allocations of water for croplands are widely considered unsustainable or 

simply infeasible.  

 

Clearly, our continued ability to sustain adequate global food production and achieve 

future food security in the twenty-first century is challenged. So, how does the World continue to 

meet its food and nutrition needs? Solutions may come from bio-technology and precision 

farming. However, developments in these fields are not currently moving at rates that will ensure 

global food security over the next few decades (Foley et al., 2011). Further, there is a need for 

careful consideration of possible adverse effects of bio-technology. We should not be looking 

back 30–50 years from now with regrets, like we are looking back now at many mistakes made 

during the green revolution. During the green revolution, the focus was only on getting more 

yield per unit area. Little thought was given to the serious damage done to our natural 

environments, water resources, and human health as a result of detrimental factors such as 

uncontrolled use of herbicides, pesticides, and nutrients, drastic groundwater mining, and 

salinization of fertile soils due to over-irrigation. Currently, there are discussions of a “second 

green revolution” or even an “ever green revolution”, but definitions of what these terms actually 

mean are still debated and are evolving (e.g., Monfreda et al., 2008). One of the biggest issues 

that has not been given adequate focus is the use of large quantities of water for food production. 

Indeed, an overwhelming proportion (60-90%) of all human water use in India, for example, 

goes for producing their food (Falkenmark, M., & Rockström, 2006). But such intensive water 

use for food production is no longer sustainable due to increasing competition for water in 

alternative uses, such as urbanization, industrialization, environmental flows, bio-fuels, and 

recreation. This has brought into sharp focus the need to grow more food per drop of water 

leading to the need for a “blue revolution” in agriculture (Pennisi, E., 2008). 

 

 

Table 6.1. World population (thousands) under all variants, 1950-2100.  
 

Year Medium 

 fertility variant 

High 

 fertility variant 

Low 

 fertility variant 

Constant  

fertility variant 

1950 2,529,346 2,529,346 2,529,346 2,529,346 

1955 2,763,453 2,763,453 2,763,453 2,763,453 

1960 3,023,358 3,023,358 3,023,358 3,023,358 

1965 3,331,670 3,331,670 3,331,670 3,331,670 

1970 3,685,777 3,685,777 3,685,777 3,685,777 

1975 4,061,317 4,061,317 4,061,317 4,061,317 

1980 4,437,609 4,437,609 4,437,609 4,437,609 

1985 4,846,247 4,846,247 4,846,247 4,846,247 

1990 5,290,452 5,290,452 5,290,452 5,290,452 

1995 5,713,073 5,713,073 5,713,073 5,713,073 

2000 6,115,367 6,115,367 6,115,367 6,115,367 

2005 6,512,276 6,512,276 6,512,276 6,512,276 

http://www.sciencemag.org/search?author1=Elizabeth+Pennisi&sortspec=date&submit=Submit
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2010 6,916,183 6,916,183 6,916,183 6,916,183 

2015 7,324,782 7,392,233 7,256,925 7,353,522 

2020 7,716,749 7,893,904 7,539,163 7,809,497 

2025 8,083,413 8,398,226 7,768,450 8,273,410 

2030 8,424,937 8,881,519 7,969,407 8,750,296 

2035 8,743,447 9,359,400 8,135,087 9,255,828 

2040 9,038,687 9,847,909 8,255,351 9,806,383 

2045 9,308,438 10,352,435 8,323,978 10,413,537 

2050 9,550,945 10,868,444 8,341,706 11,089,178 

2055 9,766,475 11,388,551 8,314,597 11,852,474 

2060 9,957,399 11,911,465 8,248,967 12,729,809 

2065 10,127,007 12,442,757 8,149,085 13,752,494 

2070 10,277,339 12,989,484 8,016,514 14,953,882 

2075 10,305,146 13,101,094 7,986,122 15,218,723 

2080 10,332,223 13,213,515 7,954,481 15,492,520 

2085 10,358,578 13,326,745 7,921,618 15,775,624 

2090 10,384,216 13,440,773 7,887,560 16,068,398 

2095 10,409,149 13,555,593 7,852,342 16,371,225 

2100 10,433,385 13,671,202 7,815,996 16,684,501 

Source: UNDP (2012). 

A significant part of the solution lies in determining how global croplands are currently used and 

how they might be better managed to optimize use of resources in food production. This will 

require development of an advanced Global Cropland Area Database (GCAD) with an ability to 

map global croplands and their attributes routinely, rapidly, consistently, and with sufficient 

accuracies. This in turn requires the creation of a framework of best practices for cropland 

mapping and an advanced global geospatial information system on global croplands. Such a 

system would need to be consistent across nations and regions by providing information on 

issues such as the composition and location of cropping, cropping intensities (e.g. single, double 

crop), rotations, crop health/vigor, and irrigation status. Opportunities to establish such a global 

system can be achieved by fusing advanced remote sensing data from multiple platforms and 

agencies (e.g., http://eros.usgs.gov/ceos/satellites_midres1.shtml; http://www.ceos-

cove.org/index.php) in combination with national statistics, secondary data (e.g., elevation, 

slope, soils, temperature, precipitation), and the systematic collection of field level observations. 

An example of such a system on a regional scale is USDA, NASS Cropland Data Layer (CDL), 

which is a raster, geo-referenced, crop-specific land cover data layer with a ground resolution of 

30 meters (Johnson and Mueller., 2010). The GCAD will be a major contribution to Group on 

Earth Observations (GEO) Global Agricultural Monitoring Initiative (GLAM), to the 

overarching vision of GEO Agriculture and Water Societal Beneficial Areas (GEO Ag. SBAs), 

G20 Agriculture Ministers initiatives, and ultimately to the Global Earth Observation System of 

Systems (GEOSS). These initiatives are also supported by the Committee on Earth Observing 

Satellites (CEOS) Strategic Implementation Team (SIT).  

http://eros.usgs.gov/ceos/satellites_midres1.shtml
http://www.ceos-cove.org/index.php
http://www.ceos-cove.org/index.php
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Within the context of the above facts, the overarching goal of this chapter is to provide a 

comprehensive overview of the state-of-art of global cropland mapping procedures using remote 

sensing as characterized and envisioned by the “Global Food Security Support Analysis Data @ 

30 m (GFSAD30)” project working group team. First, the chapter will provide an overview of 

existing cropland maps and their characteristics along with establishing the gaps in knowledge 

related to global cropland mapping. Second, definitions of cropland mapping along with key 

parameters involved in cropland mapping based on their importance in food security analysis, 

and cropland naming conventions for standardized cropland mapping using remote sensing will 

be presented. Third, existing methods and approaches for cropland mapping will be discussed. 

This will include the type of remote sensing data used in cropland mapping and their 

characteristics along with discussions on the secondary data, field-plot data, and cropland 

mapping algorithms. Fourth, currently existing global cropland products derived using remote 

sensing will be presented and discussed. Fifth, a synthesis of all existing products leading to a 

composite global cropland extent version 1.0 (GCE V1.0) is presented and discussed. Sixth, a 

way forward for advanced global cropland mapping is visualized.  

 

 

 

6.1 Global distribution of croplands and other land use and land cover: Baseline for the 

year 2000 

The first comprehensive global map of croplands was created by Ramankutty et al in 1998. A 

more current version for the year 2000 shows the spatial distribution of global croplands along 

with other land use and land cover classes (Figure 6.1). This provides a first view of where 

global croplands are concentrated and helps us focus on the appropriate geographic locations for 

detailed cropland studies.  Water and snow (Class 8 and 9, respectively) have zero croplands and 

occupy 44%  of the total terrestrial land surface. Further, forests (class 6) occupy 17% of the 

terrestrial area and deserts (class 7) an additional 12%. In these two classes, <5% of the total 

croplands exist. Therefore, in order to study croplands systematically and intensively, one must 

prioritize mapping in the areas of classes 1 to 5 (26% of the terrestrial area) where 95% of all 

global croplands exist, with the first 3 classes (class 1, 2, 3) having 75% and the next 2 20%.  

In the future, it is likely some of the non-croplands may be converted to croplands or vice versa, 

highlighting the need for repeated and systematic global mapping of croplands. Segmenting the 

world into cropland versus non-cropland areas routinely will help us understand and study these 

change dynamics better. 
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Figure 6.1. Global croplands and other land use and land cover: Baseline. 
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6.1.1 Existing global cropland maps: Remote sensing and non-remote sensing approaches 1 

There are currently six major global cropland maps: (1) Thenkabail et al. (2009a,b), (2) 2 

Ramankutty et al. (1998), (3) Goldewijk et al. (2011), (4) Portmann et al. (2008), (5) Pittman et 3 

al. (2010), and (6) Yu et al. (2013). These studies estimated the total global cropland area to be 4 

around 1.5 billion hectares for the year 2000 as a baseline. However, there are 2 significant 5 

differences in these products: 1) spatial disagreement on where the actual croplands are, and 2) 6 

Irrigated to rainfed cropland proportions and their precise spatial locations. Globally, cropland 7 

areas have increased from around 265 Mha in year 1700 to around 1,471 Mha in year 1990, 8 

whilst the area of pasture has increased approximately six fold from 524 to 3,451 Mha (Foley et 9 

al., 2011). Ramankutty and Foley (1998) estimated the cropland and pasture to represent about 10 

36% of the world's terrestrial surface (148,940,000 km
2
), of which, according to different 11 

studies, roughly 12% is croplands and 24% pasture. Multiple studies (Goldewijk et al., 2011; 12 

Portmann et al., 2008; Ramankutty et al., 2008) integrated agricultural statistics and census data 13 

from the national systems with spatial mapping technologies involving geographic information 14 

systems (GIS) to derive global cropland maps.  15 

 16 

Thenkabail and others (2011, 2009a,b) produced the first remote sensing-based global irrigated 17 

and rainfed cropland maps and statistics through multi-sensor remote sensing data fusion along 18 

with secondary data and in-situ data. They further used 5 dominant crop types (wheat, rice, corn, 19 

barley, and soybeans) using parcel-based inventory data (Monfreda et al., 2008; Portmann et al., 20 

2008; Ramankutty et al., 2008) to produce a classification of global croplands with crop 21 

dominance (Thenkabail et al., 2012). The five crops account for about 60% of the total global 22 

cropland areas. The precise spatial location of these crops is only an approximation due to the 23 

coarse resolution (approx. 1 km
2
) and fractional representation (1 to 100% crop in a pixel) of the 24 

crop data in each grid cell of all the maps from which this composite map is produced 25 

(Thenkabail et al. 2012). The existing global cropland datasets also differ from each other due to 26 

inherent uncertainties in establishing the precise location of croplands, the watering methods 27 

(rainfed versus irrigated), cropping intensities, crop types and/or dominance, and crop 28 

characteristics (e.g. crop or water productivity measures such as biomass, yield, and water use). 29 

Improved knowledge of the uncertainties (Congalton and Green, 2009) in these estimates will 30 

lead to a suite of highly accurate spatial data products in support of crop modeling, food security 31 

analysis, and decision support.  32 

 33 

6.2 Key remote sensing derived cropland products: global food security  34 

The production of a repeatable global cropland product requires a standard set of metrics and 35 

attributes that can be derived consistently across the diverse cropland regions of the World. Four 36 

key cropland information systems attributes that have been identified for global food security 37 

analysis and that can be readily derived from remote sensing include (Figure 6.2): (a) cropland 38 

extent\areas, (b) watering methods (e.g., irrigated, supplemental irrigated, rainfed), (c) crop 39 

types, and (d) cropping intensities (e.g., single crop, double crop, continuous crop). Although not 40 

the focus of this chapter, many other parameters are also derived in local regions, such as: (e) 41 

precise location of crops, (f) cropping calendar, (g) crop health\vigor, (h) flood and drought 42 

information, (i) water use assessments, and (j) yield or productivity (expressed per unit of land 43 

and\or unit of water). Remote sensing is specifically suited to derive the four key  products over 44 

large areas using fusion of advanced remote sensing (e.g., Landsat, Resourcesat, MODIS) in 45 

combination with national statistics, ancillary data (e.g., elevation, precipitation), and field-plot 46 
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data.  Such a system, at the global level, will be complex in data handling and processing and 1 

requires coordination between multiple agencies leading to development of a seamless, scalable, 2 

transparent, and repeatable methodology. As a result, it is important to have systematic class 3 

labeling convention as illustrated in Figure 6.3. A standardized class identifying and labeling 4 

process (Figure 6.3) will enable consistent and systematic labeling of classes, irrespective of 5 

analysts. First, the area is separated into cropland versus non-cropland. Then, within the cropland 6 

class, labeling will involve (Figure 6.3): (a) cropland extent (cropland vs. non-cropland), (b) 7 

watering source (e.g., irrigated versus rainfed), (c) irrigation source (e.g., surface water, ground 8 

water), (d) crop type or dominance, (e) scale (e.g., large or contiguous, small or fragmented), and 9 

(f) cropping intensity (e.g., single crop, double crop). The detail at which one maps at each stage 10 

and each parameter would depend on many factors such as resolution of the imagery, available 11 

ground data, and expert knowledge. For example, if there is no sufficient knowledge on whether 12 

the irrigation is by surface water or ground water, but it is clear that the area is irrigated; one 13 

could just map it as irrigated without mapping greater details on the type of irrigation. But, for 14 

every cropland class, one has the potential to map the details as shown in Figure 6.3.  15 

  16 
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 1 
Figure 6.2. Key global cropland area products that will support food security analysis in the 2 

twenty-first century. 3 

 4 
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 1 
Figure 6.3. Cropland class naming convention at different levels. Level I is most detailed and level IV is least detailed. 2 
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6.3 Definition of remote sensing-based cropland mapping products  1 

Key to effective mapping is a precise and clear definition of what will be mapped. It is the first 2 

and primary step, with different definitions leading to different products. For example, irrigated 3 

areas are defined and understood differently in different applications and contexts. One can 4 

define them as areas which receive irrigation at least once during their crop growing period. 5 

Alternatively, they can be defined as areas which receive irrigation to meet at least half their crop 6 

water requirements during the growing season. One other definition can be that these are areas 7 

that are irrigated throughout the growing season. In each of these cases, the irrigated area extent 8 

mapped will vary. Similarly, croplands can be defined as all agricultural areas irrespective of 9 

type of crops grown or they may be limited to food crops (and not the fodder crops or plantation 10 

crops). So, it is obvious that having a clear understanding of the definitions of what we map is 11 

extremely important for the integrity of the products developed. We defined cropland products as 12 

follows: 13 

 Minimum mapping unit 14 

The minimum mapping unit of a particular crop is an area of 3 by 3 (0.81 hectares) 15 

Landsat pixels identified as having the same crop type. 16 

 Cropland extent 17 

All cultivated plants harvested for food, feed, and fiber, including plantations (e.g., 18 

orchards, vineyards, coffee, tea, rubber). 19 

 What is a cropland pixel? 20 

>50% of pixel is cropped 21 

 Irrigated areas: Irrigation is defined as artificial application of any amount of water to 22 

overcome crop water stress. Irrigated areas are those areas which are irrigated one or 23 

more times during crop growing season. 24 

 Rainfed areas: areas that have no irrigation whatsoever and are precipitation dependent. 25 

 Cropping intensity 26 

Number of cropping cycles within a 12 month period. 27 

 Crop type 28 

8 crops (Wheat, Corn, Rice, Barley, Soybeans, Pulses, Cotton, Potatoes) 29 

6.4 Data: Remote sensing and other data for global cropland mapping 30 

Cropland mapping using remote sensing involves multiple types of data: satellite data with a 31 

consistent and useful global repeat cycle, secondary data, statistical data, and field plot data. 32 

When these data are used in an integrated fashion, the output products achieve highest possible 33 

accuracies (Thenkabail et al., 2009b,c). 34 

 35 

6.4.1 Primary satellite sensor data 36 

Cropland mapping will require satellite sensor data across spatial, spectral, radiometric, and 37 

temporal resolutions from a wide array of satellite/sensor platforms (Table 6.2) throughout the 38 

growing season. These satellites and sensors are “representative” of hyperspectral, multispectral, 39 

and hyperspatial data. The data points per hectare (Table 6.2, last column) will indicate the 40 

spatial detail of agricultural information gathered. In addition to satellite based sensors, it is 41 

always valuable to gather ground based hand-held spectroradiometer data from hyperspectral 42 

sensors and\or imaging spectroscopy from ground based, airborne, or space borne sensors for 43 

validation and calibration purposes (Thenkabail et al., 2011). Much greater details of a wide 44 

array of sensors available to gather data are presented in Chapter 1 and 2 of Volume 1 of Remote 45 

Sensing Handbook. 46 
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Table 6.2. Characteristics of some of the key satellite sensor data currently used in cropland mapping.  

Satellite sensor Wavelength range (μm) 
Spatial resolution    
(m) 

Spectral bands           
(#) 

Temporal 
(days) 

Radiometric             
(bits) 

Data points 
(per hectare)                                       

A. Hyperspectral 

EO-1 Hyperion 

VNIR 
SWIR 

 
0.43-0.93 
0.93-2.40 

 
30 
30 

196 16 16 

11.1 points for 30 m pixel 

(0.09 hectares per pixel) 

B. Advanced multispectral 

Landsat TM 

Multispectral 
Band 1 
Band 2 
Band 3 
Band 4 
Band 5 
Band 6 
Band 7 

Panchromatic 

 
 
0.45-0.52 
0.53-0.61 
0.63-0.69 
0.78-0.90 
1.55-1.75 
10.40-12.50 
2.09-2.35 
0.52-0.90 

 
 
30 
30 
30 
30 
30 
120/60 
30 
15                                                                                                                                              

                                                                   

7/8 16 8 

44.4 points for 15 m pixel 

11.1 points for 30 m pixel 

2.77 points for 60 m pixel 

0.69 points for 120 m pixel 

 

 

EO-1 ALI  
Multispectral 

Band 1 
Band 2 
Band 3 
Band 4 
Band 5 
Band 6 
Band 7 
Band 8 
Band 9 

Panchromatic 

 
 
0.43-0.45 
0.45-0.52 
0.52-0.61 
0.63-0.69 
0.78-0.81 
0.85-0.89 
1.20-1.30 
1.55-1.75 
2.08-2.35 
0.48-0.69 

 
 
30 
30 
30 
30 
30 
30 
30 
30 
30 
10 

10 16 16                                                           
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ASTER 

VNIR 
Band 1 
Band 2 
Band 3N/3B 

SWIR 
Band 4 
Band 5 
Band 6 
Band 7 
Band 8 
Band 9 

TIR 
Band 10 
Band 11 
Band 12 
Band 13 
Band 14 

 
 
0.52-0.60 
0.63-0.69 
0.76-0.86 
 
1.600-1.700 
2.145-2.185 
2.185-2.225 
2.235-2.285 
2.295-2.365 
2.360-2.430 
 
8.125-8.475 
8.475-8.825 
8.925-9.275 
10.25-10.95 
10.95-11.65 

 
15 
 
 
 
30 
 
 
 
 
 
 
90 

14 16 8 

MODIS 

MOD09Q1 
Band1 
Band2 

 
 
0.62-0.67 
0.84-0.876 

 
250 

 
2 

 
1 

 
12 

 

MOD09A1 
Band1 
Band2 
Band3 
Band4 
Band5 
Band6 
Band7 

 
0.62-0.67 
0.84-0.876 
0.459-0.479 
0.545-0.565 
1.23-1.25 
1.63-1.65 
2.11-2.16 

500 7*/36 1 12 

C. Hyperspatial 

GeoEye-1 
Multispectral 
  Band 1 
  Band 2 
  Band 3 
  Band 4 
Panchromatic 

 
 
0.45-0.52  
0.52-0.60  
0.63-0.70  
0.76-0.90  
0.45-0.90 

 
1.65 
 
 
 
 
0.41 

 
5 

 
<3 

 
11 

59,488 points for 0.41 m 

26,874 points for 0.61 m 

10,000 points for 1 m 

3673 points for 1.65 m 

1679 points for 2.44 m 

625 points for 4 m 

400 points for 5 m 

236 points for 6.5 m 

100 points for 10 m 

IKONOS 
Multispectral 
  Band 1 
  Band 2 
  Band 3 
  Band 4 
Panchromatic  

 
 
0.45-0.52  
0.51-0.60  
0.63-0.70  
0.76-0.85  
0.53-0.93 

 
4 
 
 
 
 
1 

5 3 11 

Quickbird   5 1-6 11 
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Multispectral 
Band 1 
Band 2 
Band 3 
Band 4 

Panchromatic 

 
0.45-0.52 
0.52-0.60  
0.63-0.69  
0.76-0.90  
0.45-0.90 

2.44 
 
 
 
 
0.61 

44.4 points for 15 m 

1.23 points for 90 m 

0.69 points for 120 m 

0.16 points for 250 m 

0.04 points for 500 m 
Rapideye  

Band 1 
Band 2 
Band 3 
Band 4 
Band 5 

 
0.44-0.51 
0.52-0.59 
0.63-0.68 
0.69-0.73 
0.76-0.85 

5-6.5 5 1-6 16 

* MODIS has 36 bands, but we considered only the first 7 bands (Mod09A1). 
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6.4.2. Secondary data: There is a wide array of secondary or ancillary data such as the ASTER-1 

derived digital elevation data (GDEM), long (50 to 100 year) records of precipitation and 2 

temperature, digital maps of soil types, and administrative boundaries. Many secondary data are 3 

known to improve crop classification accuracies (references?). The secondary data will also form 4 

core data for the spatial decision support system and final visualization tool in many systems.  5 

 6 

6.4.3. Field-plot data: Field-plot data (e.g., Figure 6.4) will be used for purposes such as: (i) 7 

Class identification and labeling; (ii) Determining irrigated area fractions, and (iii) Establishing 8 

accuracies, errors, and uncertainties. At each field point (e.g., Figure 6.3), data such as cropland 9 

or non-cropland, watering method (irrigated or rainfed), crop type, and cropping intensities are 10 

recorded along with GPS locations, digital photographs, and other information (e.g., yield, soil 11 

type) as needed. Field plot data will also help in gathering an ideal spectral data bank of 12 

croplands. One could use the precise locations and the crop characteristics and generate 13 

coincident remote sensing data characteristics (e.g., MODIS time-series monthly NDVI).  14 

 15 

 16 
Figure 6.4. Field plot data for cropland studies collected over the Globe.  17 

  18 
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6.4.4 Very high resolution imagery data 1 

Very high resolution (sub-meter to 5 meter) imagery (VHRI; see hyperspatial data characteristics 2 

in Table 6.2) are widely available these days from numerous sources. These data can be used as 3 

ground samples in localized areas to classify as well as verify classification results of the coarser 4 

resolution imagery. For example, in Figure 6.5, VHRI tiles identify uncertainties existing in 5 

cropland classification of coarser resolution imagery. VHRI are specifically useful for 6 

identifying croplands versus non-croplands (Figure 6.5). They can also be used for identifying 7 

irrigation based on associated features such as canals and tanks.  8 

 9 

6.4.5 Data composition: Mega File Data Cube (MFDC) concept 10 

Data pre-processing requires that all the acquired imagery is harmonized and standardized in 11 

known time intervals (e.g., monthly, bi-weekly). For this, the imagery data is either acquired or 12 

converted to at-sensor reflectance (see  Chander et al., 2009, Thenkabail et al., 2004) and then 13 

converted to surface reflectance using Landsat Ecosystem Disturbance Adaptive Processing 14 

System (LEDAPS) processing system codes for Landsat (Masek et al., 2006)  or similar codes 15 

for other sensors. All data are processed and mosaicked to required geographic levels (e.g., 16 

global, continental). One method to organize these disparate but co-located data sets is through 17 

the use of a mega-file data cube (MFDC). Numerous secondary datasets are combined in a 18 

MFDC, which is then stratified using image segmentation into distinct precipitation-elevation-19 

temperature-vegetation zones. Data within the MFDC can include ASTER-derived refined 20 

digital elevation from SRTM (GDEM), monthly long-term precipitation, monthly thermal skin 21 

temperature, and forest cover and density. This segmentation allows cropland mapping to be 22 

focused; creating distinctive segments of MFDCs and analyzing them separately for croplands 23 

will enhance accuracy. For example, the likelihood of croplands in a temperature zone of <280 24 

degree Kelvin is very low. Similarly, croplands in elevation above 1500 m will be of distinctive 25 

characteristics (e.g., patchy, on hilly terrain most likely plantations of coffee or tea). Every layer 26 

of data is geo-linked (having precisely same projection and datum and are geo-referenced to one 27 

another). 28 

 29 

The purpose of mega-file data cube (MFDC; see Thenkabail et al., 2009b for details) is to ensure 30 

numerous remote sensing and secondary data layers are all stacked one over the other to form a 31 

data cube akin to hyper spectral data cube. This approach has been used by X to map croplands 32 

in Y (reference). The MFDC allows us to have the entire data stack for any geographic location 33 

(global to local) as a single file available for analysis. For example, one can classify 10s or 100s 34 

or even 1000s of data layers (e.g., monthly MODIS NDVI time series data for a geographic area 35 

for an entire decade along with secondary data of the same area) stacked together in a single file 36 

and classify the image. The classes coming out of such a mega-file data cube inform us about the 37 

phenology along with  other characteristics of the crop.  38 

 39 
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Figure 6.5. Very high resolution imagery used to resolve uncertainties in cropland mapping of Australia. 
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6.5 Cropland mapping methods  1 

 2 

6.5.1 Remote sensing-based cropland mapping methods for global, regional, and local 3 

scales 4 

There is growing literature on cropland mapping across resolutions for both irrigated and rainfed 5 

crops (Gumma et al., 2011; Friedl et al., 2002; Hansen et al., 2002; Loveland et al., 2000; 6 

Ozdogan and Woodcock, 2006; Thenkabail et al., 2009a; Thenkabail et al., 2009c; Wardlow and 7 

Egbert, 2008; Wardlow et al., 2007; Wardlow et al., 2006). Based on these studies, an ensemble 8 

of methods that is considered most efficient include: (a) spectral matching techniques (SMTs) 9 

(Thenkabail et al., 2007a; Thenkabail et al., 2009a; Thenkabail et al., 2009c); (b) decision tree 10 

algorithms (DeFries et al., 1998); (c) Tassel cap brightness-greenness-wetness (Cohen and 11 

Goward, 2004; Crist and Cicone, 1984; Masek et al., 2008); (d) Space-time spiral curves and 12 

Change Vector Analysis (Thenkabail et al., 2005); (e) Phenology (Loveland et al., 2000; 13 

Wardlow et al., 2006); and  (f) climate data fusion with MODIS time-series spectral indices 14 

using decision tree algorithms and sub-pixel classification (Ozdogan and Gutman, 2008). More 15 

recently, cropland mapping algorithms which analyze end member spectra have been used  for 16 

global mapping by Thenkabail et al., (2009a, 2011). 17 

 18 

6.5.2 Spectral Matching Techniques (SMTs) Algorithms: SMTs (Thenkabail et al., 2007a, 19 

2009a, 2011) are innovative methods of identifying and labeling classes (see illustration in 20 

Figure 6.6, 6.7a). For each derived class, this method identifies its characteristics over time using 21 

MODIS time-series data (e.g., Figure 6.6). NDVI time-series or other metrics (Thenkabail et al., 22 

2005, 2007a, Biggs et al., 2006, Dheeravath et al., 2010) are analogous to spectra, where time is 23 

substituted for wavelength. The principle in SMT is to match the shape, or the magnitude or both 24 

to an ideal or target spectrum (pure class or “end-member”). The spectra at each pixel to be 25 

classified is compared to the end-member spectra and the fit is quantified using the following 26 

SMTs (Thenkabail et al., 2007a): (a) Spectral Correlation Similarity (SCS)-a shape measure; (b) 27 

Spectral Similarity Value (SSV)-a shape and magnitude measure; (c) Euclidian Distance 28 

Similarity (EDS)-a distance measure; and (d) Modified Spectral Angle Similarity (MSAS)-a 29 

hyper angle measure. 30 

 31 

6.5.2.1 Generating Class Spectra: The MFDC (section 6.4.5) of each of segment (Figure 6.6, 32 

6.7a) is processed using ISOCLASS K-means classification to produce a large number of class 33 

spectra with a unsupervised classification technique that are then interpreted and labeled. In more 34 

localized applications, it is common to undertake a field-plot data collection to identify and label 35 

class spectra. However, at the global scale this is not possible due to the enormous resources 36 

required to cover vast areas to identify and label classes. Therefore, spectral matching techniques 37 

(Thenkabail et al., 2007a) to match similar classes or to match class spectra from the 38 

unsupervised classification with a library of ideal or target spectra (e.g., Figure 6.6a) will be used 39 

to identify and label the classes.  40 

 41 

6.5.2.2 Ideal Spectra Data Bank (ISDB): The term “ideal or target” spectrum refers to time-42 

series spectral reflectivity or NDVI generated for classes for which we have precise location-43 

specific ground knowledge. From these locations, signatures are extracted using MFDC, 44 

synthesized, and aggregated to generate a few hundred signatures that will constitute an ISDB 45 

(e.g., Figure 6.6, 6.7a). 46 
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 1 

6.6 Automated Cropland Classification Algorithm (ACCA) (Thenkabail et al., 2012, Wu et 2 

al., 2014a, Wu et al., 2014b):  The first part of the ACCA method involves knowledge-capture to 3 

understand and map agricultural cropland dynamics by: (a) identifying croplands versus non-4 

croplands and crop type\dominance based on spectral matching techniques, decision trees tassel 5 

cap bi-spectral plots, and very high resolution imagery; (b) determining watering method (e.g., 6 

irrigated or rainfed) based on temporal characteristics (e.g., NDVI),  crop water requirement 7 

(water use by crops), secondary data (elevation, precipitation, temperature), and irrigation 8 

structure (e.g., canals and wells); (c) establishing croplands that are large scale (i.e., contiguous) 9 

versus small scale (i.e., fragmented); (d) characterizing cropping intensities (single, double, 10 

triple, and continuous cropping); (e) interpreting MODIS NDVI Temporal bi-spectral Plots to 11 

Identify and Label Classes; and (f) using in-situ data from very high resolution imagery, field-12 

plot data, and national statistics (see Figure 6.7b for details). The second part of the method 13 

establishes accuracy of the knowledge-captured agricultural map and statistics by comparison 14 

with national statistics, field-plot data, and very high resolution imagery. The third part of the 15 

method makes use of the captured-knowledge to code and map cropland dynamics through an 16 

automated algorithm. The fourth part of the method compares the agricultural cropland map 17 

derived using an automated algorithm (classified data) with that derived based on knowledge 18 

capture (reference map). The fifth part of the method applies the tested algorithm on an 19 

independent data set of the same area to automatically classify and identify agricultural cropland 20 

classes. The sixth part of the method assesses accuracy and validates the classes derived from 21 

independent dataset using an automated algorithm. 22 

 23 

 24 
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Figure 6.6. Spectral matching technique (SMT). In SMTs, the class temporal profile (NDVI curves) are matched with the ideal 

temporal profile (quantitatively based on temporal profile similarity values) in order to group and identify classes as illustrated for a 

rice class in this figure. a) Ideal temporal profile illustrated for “irrigated- surface-water-rice-double crop”; b) some of the class 

temporal profile signatures that are similar, c) ideal temporal profile signature (Fig. 6.6a) matched with class temporal profiles (Fig. 

6.6b), and d) the ideal temporal profile (Fig. 6.6a, in deep green) matches with class temporal profiles of classes 17 and 33 perfectly. 

Then one can label classes 17 and 33 to be same as the ideal temporal profile (“irrigated- surface-water-rice-double crop”). This is a 

qualitative illustration of SMTs. For quantitative methods refer to Thenkabail et al. 2007a. 
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 1 
Figure 6.7a. Cropland mapping method  illustrated here for a global scale (see Thenkabail et al., 2 

2009b, 2011). The flowchart demonstrates comprehensive global cropland mapping methods 3 

using multi-sensor, multi date remote sensing, secondary, field plot, and very high resolution 4 

imagery data. 5 
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 1 
Figure 6.7b. Cropland mapping methods illustrated for a global scale. Top half shows 2 

automated cropland classification algorithm (see Thenkabail and Wu, 2012; Wu et al., 2014a) 3 

and bottom half shows class identification and labeling process. 4 

 5 
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6.7 Remote sensing-based global cropland products: current state-of-the-art maps, their 1 

strengths, and limitations 2 

Remote sensing offers the best opportunity to map and characterize global croplands most 3 

accurately, consistently, and repeatedly. Currently, there are 3 global cropland maps that have 4 

been developed using remote sensing techniques. In addition, we also considered a recent 5 

MODIS global land cover and land use map where croplands are included. We examined these 6 

maps to identify their strengths and weaknesses, to see how well they compare with each other, 7 

and to understand the knowledge gaps that need to be addressed. These maps were produced by:   8 

1. Thenkabail et al. (Thenkabail et al., 2009b, Biradar et al., 2009, Thenkabail et al., 2011);  9 

2. Pittman et al. (2010);  10 

3. Yu et al., (2013); and 11 

4. Friedl et al (2010) 12 

 13 

Thenkabail et al. (2009b, 2011; Figure 6.8, Table 6.3) used a combination of AVHRR, SPOT 14 

VGT, and numerous secondary (e.g., precipitation, temperature, and elevation) data to produce a 15 

global irrigated area map (Thenkabail et al., 2009b, 2011) and a global map of rainfed cropland 16 

areas (Biradar et al., 2009, Thenkabail et al., 2011; Figure 6.8, Table 6.3). Pittman et al. (2010; 17 

Figure 6.9, Table 6.4) used MODIS 250 m data to map global cropland extent. More recently, 18 

Yu et al. (2013; Figure 6.10, Table 6.5) produced a nominal 30 m resolution cropland extent of 19 

the world. These three global cropland extent maps are the best available current state-of-the-art 20 

products. Friedl et al. (2010; Figure 6.11, Table 6.6) used 500 m MODIS data in their global land 21 

cover and land use product (MCD12Q1) where croplands were one of land cover classes. The 22 

methods, approaches, data, and definitions used in each of these products differ extensively. As a 23 

result, the cropland extents mapped by these products also vary significantly. The areas in Tables 24 

6.3-6.6 only show the full pixel areas (FPAs) and not sub-pixel areas (SPAs). SPAs are actual 25 

areas, which can be estimated by re-projecting these maps to appropriate projections and 26 

calculating the areas. For the purpose of this chapter, we did not estimate SPAs. However,  a 27 

comparison of the FPAs of the 4 maps (Figure 6.8 to 6.11) show significant differences in the 28 

cropland areas (Table 6.3 to 6.6) as well as significant differences in the precise locations of the 29 

croplands (Figure 6.8 to 6.11), the reasons for which are discussed in the next section. 30 
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Figure 6.8. Global cropland product by Thenkabail et al., (2011, 2009b) using the method illustrated in Figure 6.7 and described 

in section 6.1.1 (details in Thenkabail et al., 2011, 2009b). This includes irrigated and rainfed areas of the world. The product is 

derived using remotely sensed data fusion (e.g., NOAA AVHRR, SPOT VGT, JERS SAR), secondary data (e.g., elevation, 

temperature, and precipitation), and in-situ data. Total area of croplands is 2.3 billion hectares.  
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Figure 6.9.  Global cropland extent map  by Pittman et al. (2010) derived using MODIS 250 m data. There is only one  cropland class, 

which includes irrigated and rainfed areas of the world. There is no discrimination between rainfed and irrigated areas. Total area of 

croplands is 0.9 billion hectares.  

.  
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Figure 6.10.  Global cropland extent map by Yu et al. (2013) derived at nominal 30m data. Total area of croplands is 2.2 billion 

hectares. There is no discrimination between rainfed and irrigated areas. 
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Figure 6.11. Global cropland classes (Class12 and Class14) extracted from MODIS Global land use and land cover (GLC) 

500m product MCD12Q2 by Friedl et al. (2010). Total area of croplands is 2.7 billion hectares. There is no discrimination 

between rainfed and irrigated cropland areas. 
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Table 6.3.  Global cropland extent at nominal 1-km based on Thenkabail et al. (2009b, 2011)
1,2

.  1 

Class# Class Description  Pixels Percent 

# Names 1 km % 

1 Croplands, irrigated dominance 9359647 40% 

2 Croplands, rainfed dominance  14273248 60% 

3 
Natural vegetation with minor cropland 

fractions 
5504037  

4 
Natural vegetation dominance with very 

minor cropland fractions 
44170083  

  23632895 100% 
1
 =total of approximately 2.3 billion hectares; Note that these are full pixel areas (FPAs). Actual area is = 

sub-pixel area (SPA). The SPA is not estimated here. See Thenkabail et al. (2007b) for the methods for 

calculating SPAs. 
2
 = % calculated based on class 1 and 2. Class 3 and 4 are very small cropland fragments 

 2 

Table 6.4.  Global cropland extent at nominal 250 m based on Pittman et al. (2010)
1,2

.  3 

Class# Class Description  Pixels Percent 

# Names 1km % 

1 Croplands  8948507 100 
1
 =total of approximately 0.9 billion hectares. Note that these are full pixel areas (FPAs). Actual area is = 

sub-pixel area (SPA). The SPA is not estimated here. See Thenkabail et al. (2007b) for the methods for 

calculating SPAs. 
2
 = % calculated based on class 1  

 4 

Table 6.5.  Global cropland extent at nominal 30 m based on Yu et al. (2013)
1,2

.  5 

Class# Class Description  Pixels Percent 

# Names 1km % 

1 Croplands (classes 10 to 14) 7750467 35 

2 Bare-cropland(classes 94 and 24) 14531323 65 

  22281790 100 
1
 =total of approximately 2.2 billion hectares. Note that these are full pixel areas (FPAs). Actual area is = 

sub-pixel area (SPA). The SPA is not estimated here. See Thenkabail et al. (2007b) for the methods for 

calculating SPAs. 
2 
= % calculated based on class 1 and 2. 

 6 

Table 6.6.  Global cropland extent at nominal 500 m based on Friedl et al. (2010)
1
.  7 

Class# Class Description  Pixels Percent 

# Names 1km % 

1  Global croplands (Class 12 and 14)  27046084    100 
1
= approximately, total 2.7 billion hectares based on class12 and 14. Note that these are full pixel areas 

(FPAs). Actual area is = sub-pixel area (SPA). The SPA is not estimated here. See Thenkabail et al. 

(2007b) for the methods for calculating SPAs. 

 8 

6.7.1  Global cropland extent at nominal 1-km resolution 9 

We synthesized the above 4 global cropland products and produced a unified Global Cropland 10 

Extent map GCE V1.0 at nominal 1 km (Table 6.7a; Figure 6.12a). The process involved 11 

resampling each global cropland product to a common resolution of 1 km and then performing 12 

GIS data overlays to determine where the cropland extents matched and where they differed.  13 
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 1 

Figure 6.12a shows the aggregated global cropland extent map with its statistics in Table 6.7a. 2 

Class 1 in Figure 6.12a and Table 6.7a provides the global cropland extent included in all 4 3 

maps. Actual area of this extent is not calculated yet, but it includes approximately 2.3 billion 4 

full pixel areas (FPAs) (Table 6.7a). The spatial distribution of these 2.3 billion hectares is 5 

demonstrated as class 1 in Figure 12a. Class 2 and 3 are areas with minor or very minor cropland 6 

fractions. Class 2 and Class 3 are classes with large areas of natural vegetation and\or desert 7 

lands and other lands. 8 

 9 

Figure 6.12b and Table 6.7b demonstrate where and by how much the 4 products match with one 10 

another. For example, 2,802,397 pixels (class 1, Table 6.7b, Figure 6.12b) are croplands that are 11 

irrigated. Some of the products do not separately classify irrigated vs rainfed croplands, although 12 

all 4 products show where croplands are. We first identified where all 4 products match as 13 

croplands and then added irrigation status or other indicators (e.g., irrigation dominance, rainfed; 14 

Table 6.7b) from the product by Thenkabail et al(2009b, 2011).  15 

 16 

Table 6.7b and Figure 6.12b show 12 classes of which classes 1 and 2 are croplands with 17 

irrigated agriculture, classes 3 and 4 are croplands with rainfed agriculture, classes 5 and 6 are 18 

croplands where irrigated agriculture dominates, classes 7 and 8 are croplands where rainfed 19 

agriculture dominates, and classes 9 to 12 are areas with minor or very minor cropland fractions. 20 

Classes 9 to 12 are those with large areas of natural vegetation and\or desert lands and other 21 

lands. 22 

 23 

Interestingly, and surprisingly as well, only 20% (class 1 and 3; Table 6.7b, Figure 6.12b) of the 24 

total cropland extent are matched precisely in all 4 products. Further, 49% (Class 1, 2, 3, 4, and 25 

7; Table 6.7b, Figure 6.12b) of the total cropland areas match in at least 3 of the 4 products. This 26 

implies that all the 4 products have considerable uncertainties in determining the precise location 27 

of the croplands. The great degree of uncertainty in the cropland products can be attributed to 28 

factors including: 29 

A. Coarse resolution of the imagery used in the study; 30 

B. Definition of mapping products of interest; 31 

C. Methods and approaches adopted ; and  32 

D. Limitations of the data. 33 

 34 

Table 6.7c and Figure 6.12c show 5 classes of which classes 1 and 2 are croplands with irrigated 35 

agriculture, classes 3 is croplands with rainfed agriculture, classes 4 and 5 have ONLY minor or 36 

very minor cropland fractions. We recommend the use of this aggregated 5 class global cropland 37 

map (Figure 12c and Table 6.7c) produced based on the 4 major cropland mapping efforts [i.e., 38 

Thenkabail et al. (2009a, 2011), Pittman et al. (2010), Yu et al. (2013), and Friedl et al. (2010)] 39 

using remote sensing. This map (Figure 6.12c, Table 6.7c) provides clear consensus view on of 4 40 

major studies on global: 41 

 Cropland extent location; 42 

 Cropland watering method (irrigation versus rainfed).   43 

The product ((Figure 6.12c, Table 6.7c) does not show where the crop types are or even the crop 44 

dominance. However, cropping intensity can be gathered using multi-temporal remote sensing 45 

over these cropland areas. 46 
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Figure 6.12a.  An aggregated three class global cropland extent map at nominal 1-km based on four major studies: Thenkabail et al. 

(2009a, 2011), Pittman et al. (2010), Yu et al. (2013), and Friedl et al. (2010).  Class 1 is total cropland extent; total cropland extent is 

2.3 billion hectares (full pixel areas). Class 2 and Class 3 have ONLY minor fractions of croplands. Refer to Table 6.7a for cropland 

statistics of this map.
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Figure 6.12b. A disaggregated twelve class global cropland extent map derived at nominal 1-km based on four major studies: 

Thenkabail et al. (2009a, 2011), Pittman et al. (2010), Yu et al. (2013), and Friedl et al. (2010). Class 1 to Class 9 are cropland classes, 

that are dominated by irrigated and rainfed agriculture. Class 10 to and Class 12 have ONLY minor or very minor fractions of 

croplands. Refer to Table 6.7b for cropland statistics of this map. 
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Figure 6.12c. A disaggregated five class global cropland extent map derived at nominal 1-km based on four major studies: Thenkabail 

et al. (2009a, 2011), Pittman et al. (2010), Yu et al. (2013), and Friedl et al. (2010). Class 1 to Class 5 are cropland classes, that are 

dominated by irrigated and rainfed agriculture. However, class 4 and Class 5 have ONLY minor or very minor fractions of croplands. 

Refer to Table 6.7c for cropland statistics of this map. Note: Irrigation major: areas irrigated by large reservoirs created by large and 

medium dams, barrages and even large ground water pumping. Irrigation minor: areas irrigated by small reservoirs, irrigation tanks, 

open wells, and other minor irrigation. However, it is very hard to draw a strict boundary between major and minor irrigation and in 

places there can be significant mixing. So, when major irrigated areas such as the Ganges basin, California’s central valley, Nile basin 

etc. are clearly distinguishable as major irrigation, in other areas major and minor irrigation may inter-mix.    
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Table 6.7a.  Global cropland extent at nominal 1-km based on four major studies: Thenkabail et 

al. (2009b, 2011), Pittman et al. (2010),  Yu et al. (2013), and Friedl et al.(2010).  Three class 

map
1,2,3

. 

 

 

 

 

 

 

 

 

 

 

 

Table 6.7b.  Global cropland extent at nominal 1-km based on four major studies: Thenkabail et 

al. (2009b, 2011), Pittman et al. (2010), Yu et al. (2013), and Friedl et al. (2010). Twelve class 

map
1,2,3,4

. 

 

Class# Class Description  Pixels Percent 

# Names 1 km % 

1 Croplands all 4, irrigated 2802397 12 

2 Croplands 3 of 4 , irrigated 289591 1 

3 Croplands all 4, rainfed 1942333 8 

4 Croplands 3 of 4,   rainfed 427731 2 

5 Croplands, 2 of 4, irrigation dominance 3220330 14 

6 Croplands, 2 of 4, irrigation dominance 1590539 7 

7 Croplands, 3 of 4, rainfed dominance 6206419 26 

8 Croplands, 2 of 4, rainfed dominance 3156561 13 

9 Croplands, minor fragments,  2 of 4  3858035 17 

10 Croplands,  very minor fragments,  2 of 4  6825290  

11 Croplands, minor fragments, 1 of 4  6874886  

12 Croplands,  very minor  fragments,   1 of 4 44662570  

 Class 1 to 9 total  23493936 100 
1
= approximately  2.3 billion  hectares (class 1 to 9) of cropland is estimated. But this is full pixel 

area. Actual area is = sub-pixel area (SPA). The SPA is not estimated here. See Thenkabail et al. 

(2007b) for the methods for calculating SPAs. 
2
 = % calculated based on class 1 to 9  

3
=Class 10,11and 12 are minor cropland fragments 

4
=  all  4 means , all 4 studies agreed 

 

  

Class# Class Description  Pixels Percent 

# Names 1 km % 

1 1. Croplands 23493936 100 

2 2.Cropland minor fractions 13700176  

3 3.Cropland very minor fractions 44662570  
1
= approximately  2.3 billion  hectares (class 1) of cropland is estimated. But this is full pixel 

area. Actual area is = sub-pixel area (SPA). The SPA is not estimated here. See Thenkabail et al. 

(2007b) for the methods for calculating SPAs. 
2
 = % calculated based on Class 1.  

3
= Class 2 and 3are minor / very minor  cropland fragments 
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Table 6.7c.  Global cropland extent at nominal 1-km based on four major studies: Thenkabail et 

al. (2009b, 2011), Pittman et al. (2010), Yu et al. (2013), and Friedl et al.(2010). Five class 

map
1,2,3

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class# Class Description  Pixels Percent 

# Names 1 km % 

1 1.Croplands, irrigation major  3091988 13 

2 2.Croplands, irrigation minor  4810869 21 

3 3.Croplands, rainfed  11733044 50 

4 4.Croplands, rainfed minor fragments 3858035 16 

5 5.Croplands, rainfed very minor fragments 13700176  

 Class 1 to 4 total 23493936 100.0% 
1
= approximately 2.3 billion hectares (class 1 to 4 ) of cropland is estimated. But this is full pixel 

area. Actual area is = sub-pixel area (SPA). The SPA is not estimated here. See Thenkabail et al. 

(2007b) for the methods for calculating SPAs. 
2
 = % calculated based on Class 1 to 4.  

3
= Class 5 is  very minor cropland fragments 
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6.8  Change Analysis: Once the croplands are mapped (Figure 6.13), we can use the time-series 1 

historical data such as continuous global coverage of remote sensing data from NOAA Very 2 

High Resolution Radiometer (VHRR) and Advanced VHRR (AVHRR), Global Inventory 3 

Modeling and Mapping Studies (GIMMS; 1982-2000), MODIS time-series (2001-present) to 4 

help build an inventory of  historical agricultural development (e.g., Figure 6.13, 6.14). Such an 5 

inventory will provide information including identifying areas that have switched from rainfed to 6 

irrigated production (full or supplemental), and non-cropped to cropped (and vice versa). A 7 

complete history will require systematic analysis of remotely sensed data as well as a systematic 8 

compilation of all routinely populated cropland databases from the agricultural departments of all 9 

countries throughout the world. The differences in pixel sizes in AVHRR versus MODIS will: 10 

(a) influence class identification and labeling, and (b) cause different levels of uncertainties. We 11 

will address these issues by determining sub-pixel areas and uncertainties involved in class 12 

accuracies and uncertainties in areas at various spatial resolutions using methods detailed in 13 

recent work of this team (Thenkabail et al. 2007b, Velpuri et al., 2009, and Ozdogan and 14 

Woodcock 2006). Change analyses (Tomlinson, 2003) are conducted in order to investigate both 15 

the spatial and temporal changes in croplands (e.g., Figure 6.13, 6.14) that will help establish: (a) 16 

change in total cropland areas, (b) change in spatial location of cropland areas, (c) expansion on 17 

croplands into natural vegetation, (d) expansion of irrigation, (e) change from croplands to bio-18 

fuels, and (f) change from croplands to urban. Massive reductions in cropland areas in certain 19 

parts of the world will be detected, including cropland lost as a result of reductions in available 20 

ground water supply due to overdraft (Wada et al., 2012, Rodell et al., 2010).  21 

 22 

6.9 Uncertainties of existing cropland products: Currently, the main causes of uncertainties in 23 

areas reported in various studies (Ramankutty et al., 2008 versus; Thenkabail et al., 2009a; 24 

Thenkabail et al., 2009c) can be attributed to, but not limited to: (a) reluctance of national and 25 

state agencies to furnish the census data on irrigated area and concerns of their institutional 26 

interests in sharing of water and water data; (b) reporting of large volumes of census data with 27 

inadequate statistical analysis; (c) subjectivity involved in the observation-based data collection 28 

process; (d) inadequate accounting of irrigated areas, especially minor irrigation from 29 

groundwater, in national statistics; (e) definitional issues involved in mapping using remote 30 

sensing as well as national statistics; (f) difficulties in arriving at precise estimates of area 31 

fractions (AFs) using remote sensing; (g) difficulties in separating irrigated from rainfed 32 

croplands; and (h) imagery resolution in remote sensing. Other limitations include (Thenkabail et 33 

al., 2009a, 2011):  34 

A. Absence of precise spatial location of the cropland areas for training and 35 

validation;  36 

B. Uncertainties in differentiating irrigated areas from rainfed areas; 37 

C. Absence of crop types and cropping intensities; 38 

D. Inability to generate cropland maps and statistics, routinely; and 39 

E. Absence of dedicated web\data portal for dissemination cropland products. 40 

 41 

 42 
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Figure 6.13. Center image of global cropland (irrigated and rainfed) areas @ 1 km for year 2000 produced by overlying the 

remote sensing derived product of the International Water Management Institute (IWMI; Thenkabail et al., 2012, 2011, 2009a, 2009b; 

http://www.iwmigiam.org) over 5 dominant crops (wheat, rice, maize, barley and soybeans) of the world produced by Ramankutty et 

al. (2008). The 5 crops constitute about 60% of all global cropland areas. The IWMI remote sensing product is derived using remotely 

sensed data fusion (e.g., NOAA AVHRR, SPOT VGT, JERS SAR), secondary data (e.g.,  elevation, temperature, and precipitation), 

and in-situ data. Total area of croplands is 1.53 billion hectares of which 399 million hectares is total area available for irrigation 

(without considering cropping intensity) and 467 million hectares is annualized irrigated areas (considering cropping intensity). 

Surrounding NDVI images of irrigated areas: The January to December irrigated area NDVI dynamics is produced using NOAA 

AVHRR NDVI. The irrigated areas were determined by Thenkabail et al. (2011, 2009a, b). 

http://www.iwmigiam.org/
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Figure 6.14. Global agricultural dynamics over 2 decades illustrated here for some of the most significant agricultural areas of the 

World. Once we establish GCAD2010 and GCAD1990 at nominal 30 m resolution for the entire world, we will use AVHRR-MODIS 

monthly MVC NDVI time-series from 1982 to 2017 to provide a continuous time history of global irrigated and rainfed croplands, 

establish their spatial and temporal changes, and highlight the hot spots of change. The GCAD2010, GCAD1990, and GCAD four 

decade’s data will be made available on USGS global cropland data portal (currently under construction): 

http://powellcenter.usgs.gov/current_projects.php#GlobalCroplandsAbstract.

http://powellcenter.usgs.gov/current_projects.php#GlobalCroplandsAbstract
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Further, the need to map accurately specific cropland characteristics such as crop types and 1 

watering methods (e.g., irrigated vs. rainfed) is crucial in food security analysis. For example, the 2 

importance of irrigation to global food security is highlighted in a recent study by Siebert and 3 

Doll (2009) who show that without irrigation there would be a decrease in production of various 4 

foods including dates (60%), rice (39%), cotton (38%), citrus (32%), and sugarcane (31%) from 5 

their current levels. Globally, without irrigation cereal production would decrease by a massive 6 

43%, with overall cereal production, from irrigated and rainfed croplands, decreasing by 20%. 7 

 8 

These limitations are a major hindrance in accurate/reliable global, regional, and country-by-9 

country water use assessments that in turn support crop productivity (productivity per unit of 10 

land; kg\m
2
) studies, water productivity (productivity per unit of water; kg\m

3
) studies, and food 11 

security analyses. The higher degrees of uncertainty in coarser resolution data are a result of an 12 

inability to capture fragmented, smaller patches of croplands accurately, and the homogenization 13 

of both crop and non-crop land within areas of patchy land cover distribution.  In either case, 14 

there is a strong need for finer spatial resolution to resolve the confusion. 15 

 16 

6.10 Way forward 17 

Given the above issues with existing maps of global croplands, the way forward will be to 18 

produce global cropland maps at finer spatial resolution and applying a suite of advanced 19 

analysis methods. Previous research has shown that at finer spatial resolution the accuracy of 20 

irrigated and rainfed area class delineations improve because at finer spatial resolution more 21 

fragmented and smaller patches of irrigated and rainfed croplands can be delineated (Ozdogan 22 

and Woodcock, 2006; Velpuri et al., 2009). Further, greater details of crop characteristics such as 23 

crop types (e.g., Figure 6.15) can be determined at finer spatial resolutions. Crop type mapping 24 

will involve use of advanced methods of analysis such as data fusion of higher spatial resolution 25 

images from sensors such as Resourcesat\Landsat and AWiFS\MODIS (e.g., Table 6.2) 26 

supported by extensive ground surveys and ideal spectral data bank (ISDB) (Thenkabail et al., 27 

2007a). Harmonic analysis is often adopted to identify crop types (Sakamoto et al., 2005) using 28 

methods such as the conventional Fourier analysis and adopting a Fourier Filtered Cycle 29 

Similarity (FFCS) method. Mixed classes are resolved using hierarchical crop mapping protocol 30 

based on decision tree algorithm (Wardlow and Egbert, 2008). Irrigated versus rainfed croplands 31 

will be distinguished using spectral libraries (Thenkabail et al., 2007) and ideal spectral data 32 

banks (Thenkabail et al., 2009a, 2007a). Similar classes will be grouped by matching class 33 

spectra with ideal spectra based on spectral matching techniques (SMTs; Thenkabail et al., 34 

2007a). Details such as crop types are crucial for determining crop water use, crop productivity, 35 

and water productivity leading to providing crucial information needed for food security studies. 36 

However, the high spatial resolution must be fused with high temporal resolution data in order to 37 

obtain time-series spectra that are crucial for monitoring crop growth dynamics and cropping 38 

intensity (e.g., single crop, double crop, and continuous year round crop). Numerous other 39 

methods and approaches exist. But, the ultimate goal using multi-sensor remote sensing is to 40 

produce croplands products such as:  41 

1. Cropland extent\area,  42 

2. Crop types (initially focused on 8 crops that occupy 70% of global croplands),  43 

3. Irrigated vs. rainfed croplands,   44 

4. Cropping intensities\phenology (single, double, triple, continuous cropping),  45 

5. Cropped area computation; and  46 
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6. Cropland change over space and time 1 

 2 

 3 
Figure 6.15. Rice map of south Asia produced using the method illustrated in Figure 6.6. 4 

[Source: Gumma et al., 2011]. 5 

 6 

6.11 Conclusions 7 

This chapter provides an overview of the importance of global cropland products in food security 8 

analysis. It is obvious that only remote sensing from Earth Observing (EO) satellites provides 9 

consistent, repeated, high quality data for characterizing and mapping key cropland parameters 10 

for global food security analysis. Importance of definitions and class naming conventions in 11 

cropland mapping has been re-iterated. Typical EO systems and their spectral, spatial, temporal, 12 

and radiometric characteristics useful for cropland mapping have been highlighted. The chapter 13 

provides a review of various cropland mapping methods used at global, regional, and local 14 
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levels. One of the remote sensing methods for global cropland mapping has been illustrated. The 1 

current state-of-the-art provides four key global cropland products (listed below later in this 2 

paragraph) derived from remote sensing, each produced by a different group. These products 3 

have been produced using: (a) time-series of multi-sensor data and secondary data, (b) 250 m 4 

MODIS time-series data, (c) 30 m Landsat data, and(d) a MODIS 500 m time-series derived 5 

cropland classes from a land use\land cover product has been used. These four products were 6 

synthesized, at nominal 1 km, to obtain a unified cropland mask of the world (global cropland 7 

extent version 1.0 or GCE V1.0). It was demonstrated from these products that the uncertainty in 8 

location of croplands in any one given product is quite high and no single product maps 9 

croplands particularly well. Therefore, a synthesis identifies where some or all of these products 10 

agree and where they disagree. This provides a starting point for the next level of more detailed 11 

cropland mapping at 250 m and 30 m. The key cropland parameters identified to be derived from 12 

remote sensing are: (1) cropland extent\areas, (2) cropping intensities, (3) watering method 13 

(irrigated versus rainfed), (4) crop type, and (5) cropland change over time and space. From these 14 

primary products one can derive crop productivity and water productivity. Such products have 15 

great importance and relevance in global food security analysis. 16 

Authors recommend the use of composite global cropland map (see Figure 6.12c, Table 6.7c) 17 

that provides clear consensus view on of 4 major cropland studies on global: 18 

 Cropland extent location; 19 

 Cropland watering method (irrigation versus rainfed).   20 

The product (Figure 6.12c, Table 6.7c) does not show where the crop types are or even the crop 21 

dominance. However, cropping intensity can be gathered using multi-temporal remote sensing 22 

over these cropland areas. 23 

 24 

 25 
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